Induction courses

ActEd runs in-house induction courses in September and October each year to give new actuarial students a flying start to the early subjects, as well as introducing and developing the basic actuarial skills that new students will use in the office.

For employers with a larger number of new actuarial students, we run in-house induction courses. These can be tailored more closely to the needs of an individual employer and can be incorporated into the employer’s current induction programme. For example, sessions on the subject material can be interspersed with other internal training sessions.

Please contact ActEd Tutorials if you would like to discuss in-house induction courses in more detail.


Standard course content

The course covers the following areas:

Assumed knowledge (1) – pure mathematics
  • Integration
  • Differentiation
  • Solving equations (including interpolation)
  • Summation of series

Assumed knowledge (2) – probability and statistics
  • Probability
  • Conditional probability
  • Using probability trees
  • Random variables
  • Expectation
  • Variance

Introduction to CS1 – statistics
  • Distributions (binomial, Poisson, normal, lognormal).
  • Demonstration of R

Introduction to CM1 (1) – financial mathematics
  • Interest rates (simple and compound)
  • The compound interest functions i,d,v,δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8rkY=xiVfYhOiVeY=Hhcba9v8qqaq Fr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgea YRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaabauqaaOqaai aadMgacaGGSaGaaGjbVlaadsgacaGGSaGaaGjbVlaadAhacaGGSaGa aGjbVlabes7aKbaa@4372@
  • Present values and accumulated values of annuities (with annual, p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8rkY=xiVfYhOiVeY=Hhcba9v8qqaq Fr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgea YRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaabauqaaOqaai aadchaaaa@393A@ thly or continuous payments) payable in arrears and in advance
  • Changing the time period (effective rates and nominal rates)
  • Increasing annuities (with level and/or compound increases)
  • Loans with a demonstration of Excel

Introduction to CM1 (2) – survival models and contingencies
  • Mortality ( q x ,  p x q n x ,  p n x ,  q m|n x ,  μ x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8rkY=xiVfYhOiVeY=Hhcba9v8qqaq Fr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgea YRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaabauqaaOqaai aadghadaWgaaWcbaGaamiEaaqabaGccaGGSaGaaeiiaiaadchadaWg aaWcbaGaamiEaaqabaGccaqGSaGaaeiiamaaBeaaleaacaWGUbaabe aakiaadghadaWgaaWcbaGaamiEaaqabaGccaGGSaGaaeiiamaaBeaa leaacaWGUbaabeaakiaadchadaWgaaWcbaGaamiEaaqabaGccaGGSa GaaeiiamaaBeaaleaacaWGTbWaaqqaaeaacaWGUbaacaGLhWoaaeqa aOGaamyCamaaBaaaleaacaWG4baabeaakiaacYcacaqGGaGaeqiVd0 2aaSbaaSqaaiaadIhaaeqaaaaa@5291@ ) and shapes of the graphs
  • Explanation of notation, tables
  • Lifetime random variables ( K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8rkY=xiVfYhOiVeY=Hhcba9v8qqaq Fr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgea YRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaabauqaaOqaai aadUeadaWgaaWcbaGaamiEaaqabaaaaa@3A3E@ and T x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8rkY=xiVfYhOiVeY=Hhcba9v8qqaq Fr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgea YRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaabauqaaOqaai aadsfadaWgaaWcbaGaamiEaaqabaaaaa@3A47@ )
  • Calculation of probabilities (using life tables)
  • Explanation and calculations for: a x , a ¨ x , a ¨ x: n , a ¨ x: n ¯ , A x , A x: n , A x: n 1 , A x: n 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8rkY=xiVfYhOiVeY=Hhcba9v8qqaq Fr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgea YRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqaaeaadaabauqaaOqaai aadggadaWgaaWcbaGaamiEaaqabaGccaGGSaGaaGjbVlqadggagaWa amaaBaaaleaacaWG4baabeaakiaacYcacaaMe8UabmyyayaadaWaaS baaSqaaiaadIhacaGG6aWaaucdaeaacaWGUbaaaaqabaGccaGGSaGa aGjbVlqadggagaWaamaaBaaaleaadaqdaaqaaiaadIhacaGG6aWaau cdaeaacaWGUbaaaaaaaeqaaOGaaiilaiaaysW7caWGbbWaaSbaaSqa aiaadIhaaeqaaOGaaiilaiaaysW7caWGbbWaaSbaaSqaaiaadIhaca GG6aWaaucdaeaacaWGUbaaaaqabaGccaGGSaGaaGjbVlaadgeadaqh aaWcbaGaamiEaiaacQdacaaMc8+aaucdaeaacaWGUbaaaaqaaiaaig daaaGccaGGSaGaaGjbVlaadgeadaqhaaWcbaGaamiEaiaacQdacaaM c8+aaucdaeaacaWGUbaaaaqaaiaaysW7caaMe8UaaGPaVlaaigdaaa aaaa@6B0D@
  • Equations of value
  • Calculating premiums
  • Pension calculations
  • Cashflow approaches with a demonstration of Excel

In addition, there will be an introductory session covering the exam system, how much study is needed, exam preparation and study hints.

The course will finish with a short mock exam on the last afternoon of the course, containing a wide range of exam-style questions. The mock exam will emphasise the importance of understanding, accuracy and speed, and will prevent students from developing any complacency in their approach to their actuarial studies.


Feedback to employers

Employers sending students on this course will receive feedback on their students’ performance during the three days and an interpretation of the marks obtained in the mock exam.


Feedback from students

Students who have attended ActEd induction courses in the past have found that they went away with the foundations of their knowledge of the early subjects firmly laid, and with a clear idea of how their studying pattern needed to develop over the forthcoming year.